Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Mande Kato Hosea

Mande Kato Hosea

Kaduna state university, Nigeria

Title: Forests carbon input and changes soil properties of the tropical rain forestmalaysia

Biography

Biography: Mande Kato Hosea

Abstract

The tropical forest ecosystem play a critical role in the forest carbon input and it is important to understand the rate of occurrences by quantifying the forest biomass and its effect on soil properties in relation to microclimate condition and environmental factors. The study was conducted in the tropical forest ecosystem of Malaysia. The aim of the study was to estimate the forest carbon input and its effects on changes soil properties in the tropical forests. The Malaysia lowland tropical forest was found to be a carbon sink with an accumulation rate of total above ground biomass (TAGB), below ground biomass (BGB) and total forest carbon (SOCs) of 2788.64 to 3009.97, 100.88 to 134.94 and 2996.13 to 3088.98 mg ha-1 respectively and varied between February and September and October and January. The soil properties; total organic carbon (TOC), soil organic carbon (SOC) and soil carbon stock (SOCstock) varied in relation to forest biomass at a ranges of 1.1 to 3.0, 1.1 to 5.89 and 58.01 to 70.46 mg ha-1 , respectively. The forest biomass gradually increase over time and also influence the concentration and increase in soil properties in present of environmental factors responsible for physiological activity. The multiple linear regression and Pearson correlation indicated a strong positive correlation (R2=0.98, p<0.01) between forest biomass, soil properties and environmental factors. The tropical lowland forest of Malaysia indicated to increase the forest biomass over time and significantly influenced the concentration of soil properties.